
Charge sharing for MAPS detector pixels

Tony Frawley
FSU

sPHENIX Simulations Meeting
3/14/2017

1

Why we need charge sharing for MAPS
The existing implementation of the MAPS pixel readout does not
include charge sharing.

This was allowed for in our previous simulations (by Mike) by
reducing the pixel size from 30 microns to 20 microns, so that the
effective resolution of 20 microns/√12 is about equal to what we
would expect with 30 micron pixels and charge sharing. This
worked well enough for the cylinder cell geometry.

However there is a problem with this when we use the realistic
model of the MAPS detector.

The ladders are tilted so, unlike the cylinder cell model, we get a
substantial number of tracks that pass through two or more pixels.
This allows the clustering to get a much better position resolution
for some hits, as shown in the next few slides.

2

Without charge sharing
The value of 20 microns/√12 is 5.8 microns. However if we plot
the difference in clusterizer position from the truth hit position, we
see something different from that.

cluster error (cm)
0.001− 0 0.001

0

200

400

600

800

1000

1200

1400
 mµRMS 4.4

MAPS clusters

cluster size (pixels)
0 5 10 15

0

2000

4000

6000

8000

10000

12000

14000

16000
Mean 1.5 (hits)

MAPS hits/cluster

3

Without charge sharing
The reason for this can be seen if we select clusters with 1 pixel
(left) or > 1 pixel (right). having more than 1 hit pixel increases the
position resolution quite a bit, and it becomes unrealistically good.

cluster error (cm)
0.001− 0 0.001

0

100

200

300

400

500

 mµRMS 4.9
MAPS clusters

cluster error (cm)
0.001− 0 0.001

0

100

200

300

400

500

600

700

800

900
 mµRMS 3.8

MAPS clusters

4

Charge sharing
So, we need charge sharing for a realistic simulation with the
ladders. I have implemented a simple charge sharing algorithm for
the MAPS pixels.

I found the following thesis to be very helpful:

“Measurements and simulations of MAPS (Monolithic Active Pixel
Sensors) response to charged particles - a study towards a vertex
detector at the ILC”, by Lucasz Maczewski, Warsaw University
(arXiv:10053.3710).

My main takeaway from his model of charge diffusion in the
epitaxial layer of a MAPS detector (chapter 7) was how the
diffusion width varies with depth in the epitaxial layer (figure 7.3,
shown on the next slide).

5

Diffusion width
The modeled probability
distribution vs diffusion
distance for electrons in a 14
μm deep MAPS epitaxial
layer.

Shows results for charge
formed at four different depths
(h) above the collecting
diodes.

Red curves are for electrons
that drift in the direction of the
collecting diode. Blue curves
are for electrons that drift
toward the substrate and are
reflected before being
collected.

6

Diffusion width
I did not want to try to
implement complicated
curves like this.

I made the simplification
that diffusion produces a
circle of electrons of uniform
density with:

r = 12 μm (at h = 0)
r = 35 μm (at h = 18 μm).

These radii can be varied to
see whether they make
much difference.

7

Diffusion width - cont.
I need to make one more assumption:

The charge collected in a pixel will equal the charge that diffuses into
the area of the pixel.

8

Charge sharing algorithm
I implemented the following simple procedure in PHG4MapsCellreco:

Start with the G4 hit in the MAPS sensor:
• Find the entry location (y_in, z_in) and exit location (y_out, z_out) of

the hit in local (sensor) coordinates
• Find the corresponding pixel numbers and get their positions in the

(y,z) array of pixels (expressed as (npixel_y, npixel_z))
• Make a list of all pixels between:

• npixel_y(min) - 2 and npixel_y(max) + 2
• npixel_z(min) -2 and npixel_z(max) + 2

• Divide the line connecting (y_in, z_in) and (y_out, z_out) into 4
segments (each with 1/4 of the energy) and loop over them:

• For each segment, calculate the diffusion width (depends on depth)
• Calculate the overlap area of the diffusion circle with each pixel in

the list (uses a general analytic formula)
• Accumulate the energy deposited in each pixel

• Create a cell (pixel) entry for every cell containing non-zero energy
9

Code changes
The modified code for PHG4MapsCellReco.(h,C) is committed to
“adfrawley/coresoftware" in the “charge_sharing” branch.

https://github.com/adfrawley/coresoftware/tree/charge_sharing/simulation/g4simulation/
g4detectors

The tests reported here were run using the macro:
G4_Svtx_maps_ladders+intt_ladders+tpc.C
from “adfrawley/macros” in the “QTG_macros” branch.

https://github.com/adfrawley/macros/tree/QTG_macros/macros/g4simulations

10

https://github.com/adfrawley/coresoftware/tree/charge_sharing/simulation/g4simulation/g4detectors
https://github.com/adfrawley/macros/tree/QTG_macros/macros/g4simulations

Effect of diffusion constant - cluster errors
From 2-pion events, with 20 μm pixels, I see the following distributions
of cluster errors per cluster for three different diffusion constants:

cluster error (cm)
0.001− 0 0.001

0
200
400
600
800

1000
1200
1400
1600
1800

 mµRMS 3.2
MAPS clusters

cluster error (cm)
0.001− 0 0.001

0

200

400

600

800

1000

1200

1400

1600

1800
 mµRMS 3.4

MAPS clusters

cluster error (cm)
0.001− 0 0.001

0

100

200

300

400

500

600

700

800
 mµRMS 3.3

MAPS clusters

diffusion 35/12 diffusion 45/20diffusion 25/8

11

Effect of diffusion constant - pixels/cluster
From 2-pion events, with 20 μm pixels, I see the following distributions
of cluster pixel multiplicity per cluster for three different diffusion
constants:

diffusion 35/12 diffusion 45/20diffusion 25/8

cluster size (pixels)
0 5 10 15

0

2000

4000

6000

8000

10000

Mean 2.7 (hits)
MAPS hits/cluster

cluster size (pixels)
0 5 10 15

0

1000

2000

3000

4000

5000

6000

7000

Mean 3.1 (hits)
MAPS hits/cluster

cluster size (pixels)
0 5 10 15

0

500

1000

1500

2000

2500

3000

Mean 4.2 (hits)
MAPS hits/cluster

12

Effect of diffusion constant - summary
Initially I chose the diffusion constant range of 35 μm to 12 μm because
that was where the electron probability distributions simulated by
Maczewski dropped by ~ 3 from their peak values.

When I repeated the exercise using diffusion constants of (25 μm to 8 μm,
seems too low) and (45 μm to 20 μm, seems too high) the cluster
resolution values changed by only 1 and 2 μm respectively (< 6%). So I
conclude that the cluster resolution is insensitive to the diffusion constants.

The pixels/cluster were more sensitive to the diffusion constant changes,
decreasing by 13% and increasing by 35% respectively. This is not
surprising, reflecting just the different areas of the diffusion circle.

I conclude that diffusion constants ranging from 35 μm for charge created
furthest from the diode to 12 μm for charge created near the diode should
give reasonable results for the cluster resolution and decided to stick with
that.

13

Changing to a realistic pixel size
I changed the pixel size from 20 μm to 30 μm. The pixel size is set in
the macro “G4_Svtx_maps_ladders+intt_ladders+tpc.C” during the
initialization of “PHG4MapsSubsystem”.

ALICE claims that the resolution should be < 5 μm
cluster error (cm)

0.001− 0 0.001
0

200

400

600

800

1000

1200

 mµRMS 4.7
MAPS clusters

cluster size (pixels)
0 5 10 15

0

2000

4000

6000

8000

10000

12000
Mean 2.7 (hits)

MAPS hits/cluster

14

Conclusions
The simple charge sharing model that I put into PHG4MapsCellReco
seems to produce about the expected cluster resolution for 30 micron
pixels, and the result is insensitive to the diffusion parameters used in
the model.

Once we have access to the algorithm used by ALICE in their
simulations, we can switch to that. But for now I propose that we use
this simple charge sharing model for ladder MAPS simulations to
overcome the problems outlined in the first few slides. At the same
time we should change to using 30 μm square pixels for the maps
ladders.

15

